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Abstract: The exploitation of data locality has been crucial for achieving high performance 
in parallel computers, The techniques used for that range from those requiring programmer 
intervention. to those relying on a run-time system that automatically moves data. This 
paper presents a memory management system that, \\hile moving data automatically, still 
requires the programmer to provide the size of a basic unit of access. Data locality is 
exploited by automatically moving blocks of global data to local memory as necessary. The 
system is developed for data parallel programs \Nhere the same computation is performed 
on disjoint groups of data. lt is shown that the system can produce comparable results to 
those obtained by hand-coded versions. The effects of imposing a limit on the local 
memor; s ize of the processors are al so analyzed. 
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L Introduction 

Efficient data management has been crucial for achieúng high performance almost since the first 
computers vvere built. The differences in cost and access time of memory devices resulted in 
hierarchical systems where fast (more expensive) de\ ices are at the top of the hierarchy. i.e. 
closer to the processor, vvhile slow ( cheaper) devices are located further away. High performance 
is achiewd by carefully managing data so that currently used data is at the highest possible leve!. 
The effectiveness of this approach is due to a natural characteristic of programs known as locality 
of reference. T\\ o types of locality are exploited: temporal locality which states that recently 
referenced items are likely to be referenced again in the near future, and spatial locality which 
refers to the tendency for items to be referenced in clusters. Given the effectiveness of exploiting 
data locality in sequential machines, it is not surprising that this technique has also been 
employed in paralld machines. 

Besides temporal and spatial locality, two new types of locality become importan! in parallel 
computing. Parallel machines with no globally accessible data usually use direct interconnection 
networks forming a distributed memory hierarchy, i.e. the processors are at different distances 
from each other. T o improve locality of reference in these machines, network locality, al so known 
as communication locality. can be exploited. This means that remote accesses should be restricted 
to the neighbourhood of the processor so that long delays can be avoided. This approach can be 
quite effective in producing high performance programs, but it has the serious drawback of 
producing non-portable software. 
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reference by moving global data el ose (cache or memory) to the processor. In order 
two-level memory hierarchy to efficiently, processor 
exploited. Processor locality requires that references to a particular region of data come from the 
same processor. To keep high processor locality" unnecessary interference from other 
should be avoided. The reason processor locality is desirable has to do with the memory 
coherency problem. With all processors being able to access global data, if replication of the data 
is allowed, the system must make sure that once one of these copies is modified the others are 
updated or invalidated. Unless there is high processor locality, the traffic generated these 
operations can degrade the system's performance. 

The techniques developed for exploiting data locality in parallel machines resemble those 
developed for sequential machines and in some cases represent an extension of them. These 
techniques either determine data mapping and data movement statically, i.e. before execution, or 
move data on demand during run time. In the first case the programmer is required to do the job 
himself or to provide informatíon to guide the compiler in generating code to automate this 
process. In the second case, a run time system is used to move data to where it is needed. 

This paper presents a memory management system that while moving data automatically, still 
requires the programmer to provide the size of a basic unit of access. The next two sections give a 
brief overview of the techniques proposed so far to exploit data locality in parallel machines. The 
following section describes the target architecture used in the experiments conducted. The 
automatic memory management system proposed is then described in section 5. The final section 
then summarizes and discusses the results. 

2. Data Locality Expioitation u.nder Prog:ramm.er Intervention 

In the early days of computing the programmer was responsible for memory management. The 
programmer would determine, at each moment of time, how information should be distributed 
between main memory and backing storage. Whenever the program was expected to exceed the 
size ofmain memory, it had to be split into segments which could be overlaid and commands had 
to be inserted to make sure the correct overlay was in memory at any time. This approach was 
based on the assumptions that it was possible to predict both memory availability of the program 
and its behaviour (reference string) so that locality of reference could be exploited. These rather 
restrictive assumptions made the applicability of this approach limited to a small number of 
applications where static (preplanned) allocation was possible. Automatic folding systems were 
eventually proposed and showed to be of comparable performance and ofwider applicability. 

The scenario described above resembles that of programming DADM (Disjoint Address-space, 
Distributcd Memory) machines using the message passing paradigm. In these systems ( e.g. 
TCGMSG [Har90], PVM [GeSu92], MPI [MP193]) the programmer must distribute data across 
the processors and use explicit message passing to control data movement. Data movement is 
implemented by inserting send and receive commands into the program to make sure the required 
data is moved from one node to another. The need for these commands, though, is not due to 
limited size of local memory but because the processors (usually) need to share data to solve a 
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messages must 
dependent on the 

computation takes place and what communication is 
over data movement and is encouraged to exploit network locality to 

coding of data exchange (send/receive commands) is based on 
experimentation \Vith different data distributions usually requires a great 
Given a good data distribution this approach can be quite effective 

programs it imposes too much on the 
\Vith the challenge of a parallel for the problem 

chosen. 
of reprogramming. 

hígh 

Programming machines using explicit message passing is time consuming and 
error prone. T o free the programmer from this burden so me researchers ha ve proposed using 
langLtages based on a global name space, for example C* [RoSt87]. Split-C [CDGK93]. Fortran 
D [HKT92]. and more recently High Performance Fortran [HPC93]. an extension Fortran 
which has being proposed as a standard data parallel Fortran programming language. The idea is 
to facilitate the programmer's by allovving him to v .. rite using global data references. as 
on a shared memory machine. sophisticated compiler is then used to translate 
this codc into a message passing program. However. since data distributíon is crucial to 
performance. the programmer is required to annotate the program directíves specifying hO\\ 

the data should be mapped onto the distributed memory machine. 
Compiler-managed memory. although m u eh more com enient from the programmer's point 

than the use of explicit message passing. still forces the prograrmrter to become aware 
machine idiosyncrasies. In generaL the best distribution scheme depends not on program 
characteristics. but also on a number of machine-specif1c en kmd of 
optimisations performed by the compiler. In addition the choice a smgle data distríbution for 
the entire program may result in poor performance. This ís because a data distribution 
may be \\ ell-suited for one phase of an algorithm. it may not be good, terms performance. 
for a subsequent phase. In these situations the programmer is required to include realign and 
redistribution directi\·es between phases ofthe program. 

3. Programmer Tnmsparent Data Locality Exploitation 

In the early computers, memory management was the programmer's responsibility. HoweveL 
to the increasing complexity of programs and new requirements demanded by multiprogrammíng 
and time-sharing systems. dynamic memory management techniques started being investígated. 
The idea \Vas to have an adaptive system which would operate on-the-fly as the program runs. 
mapping the program into whatever memory size was m ailable. This resulted in the development 
of automatic mapping units which later became the virtual memory systems that we today. 
FollO\Ying a similar line of development slave memories. today known as cache memories. were 
developed to improv-e the performance of the memory hierarchy between the CPU the main 

, Both techniques, memory and cache, move data and take 
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advantage of the locality of reference presented by programs. These tvvo techniques were 
predicted to become pmi of most sequential machines and this has happened. 

Similar ideas have been used in parallel machines. Parallel machines with a Single Address­
space and Distributed Memory (SADM) have received a lot of attention recently. Having a 
physically distributed memory means that these machines are easy to scale. In addition the 
provision of a single address space frees the programmer from the burden of message passing 
programming. In order to provide a single address space in these distributed memory machines, 
each processor has to be able to directly access every other local memory. This can be done either 
by having processors with sufficient address space (address bits) to directly address the entire 
physical rnemory of the m achine, or by concatenating node number and address within a no de to 
achieve the same objective. However, due to the high communication costs of these machines, 
frequent remote accesses would degrade performance substantially. The solution adopted in 
practice is to move blocks of data in an attempt to exploit data locality and thus decrease the 
number of remote accesses. In addition, data is usually allowed to be replicated so that multiple 
read accesses can take place at the same time using local accesses. Provided the application 
presents a high processor locality, the system can be expected to perform welL Systems 
implementing these ideas are commonly known as Distributed Shared Memory (DSM) systems 
(e.g. IVY [LiSc89], KOAN [LaPr89], DDM [WaHa88], DASH [LLGG90]). They have their 
roots in the virtual memory and cache systems of sequential machines. number of DSM's have 
been proposed, ranging from simple run-time library extensions to sophisticated hardware 
designs. 

4, Target Architecture 

The experimental platform used in this work is a simulator [1'Jash93] of a distributed memory 
machine which supports uniform global access by the use of data randomisation. This 
Randomised Shared Memory (RSM) provides a single address space and automatically maps data 
to processors by the use of hash functions, i.e. data is spread over the processors so that 
probability of overloading any local memory is diminished. The shared address space 
distinguishes two forms of data: global data which is randomly distributed amongst al! processors 
and local data which is mapped to a single processor memory. 

The simulator includes a detailed performance model which costs operations based on 
measured performance figures for the T9000 transputer processor and simulations of the e 104 
packet router. Local operations modelled by the simulator ínclude arithmetic calculation, context 
switching, message handling and local process management Messages entering the network are 
assumed to be split up to guarantee that no one message ti es up a switch for long periods of time. 
Work on validating the simulator has been carried out at Leeds with a close match being found 
between theoretical predictions and experimental results [NDD95]. 

The simulator is written in e and provides a rich programming interface to execute algorithms 
written in C. The programming interface consists of a set of library procedures which support 
process management, shared data access and process synchronisation. Only a small subset of 
these library calls were used in this research, including: procedures for process management 
(fork, jo in, m y_ node and my _index), read and write procedures for data access, and a procedure 
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to barrier synchronise processes. Parallel algorithms, implemented using the programming 
interface. are executed directly on the simulator. This way the sequence of operations generated 
by the program drives the simulator ( execution-driven discrete-event simulation). 

5. The Memory Managemen.t System Proposed 

The RSM systems provide by the target architecture facilitates the design and analysis of 
algorithms since the programmer dcíes not have to wony about data rnapping, and the access 
patterns to memory generated by the processors can be assumed random. However. it destroys 
data locality because data is kept local to processors that do not necessarily need it. Thus most 
memory accesses tend to be non local. If costs involved in non-local access are high, 
becomes prohibitive. to overcome probler.o. is to part of the memory 
reserved for local data which is not mapped via the hashing algorithm. This substantial 

in performance can be 
using local 

implementation. The extra 
algorithms a predictable communication structure; knowledge 
reference allows for good allocation reduces comrnunication costs. However. 
in other cases. \Vhere the algorithm's communication requirements are 
example where communication patterns are input data dependent, exploitation of 
much and may require dynamic memory management. 

To this problem, the automatic memory management system is proposed. 
The defines global data together s1ze a 
system uses this information to a block of 
blocks copied to local are kept until 

modified blocks are back to global memory. One problem approach is 
replicas of a block have to updated invalidated) each time contents 

operation). Howe\·er. this is not a problem for data parallel algorithms which operate on disjoint 
groups of data. The run-tíme acts as a cache-like system by prefetching data which is 
expected to be used later on. Each time a rnemory access is requested, the corresponding block 
number is calculated and the memory access is performed either locally or remotely (globally). 
Data is kept coherent when the processors are synchronised. 

To test the system proposed, a parallel version the matrix multiplication algorithm, and a 
parallel sort using a balanced merge [FrMa88] were used. For the matrix multiplication algorithrn 
(C=AxB). each processor calculates a (n!p112 x n!pil2) sub matrix of C by reading n/p 112 rows of A 
and n/p 112 columns of B. In the parallel sort algorithrn, each of the p processors starts sm1ing 
nlp elements and then proceeds in a log(p)-phase merge. The number elements in each 
phase varíes from n/p in the first phase to n elements in the final doubling each time. 
is because partition's boundaries are calculated using a binary search over an increasing search 
space. 

of algorithm were implemented: one using manual ( explicit) copying 
and the other relying on the system proposed. To illustrate this figure 1 a 

499 



code fragment of the two versions for the parallel sort, one doing the copyíng manually and the 
other using the automatic memory system. To be able to measure the impact of the system on 
performance, routines implementing the automatic memory system were incorporated in the 
simulator so that cornpletion times of the algorithms, taking into account the extra management 
overheads, could be obtained. Figure 2 shows the performance achieved for direct global memory 
access (RSM) and that obtained with the programmer intervention (RSM+Copying). It is clear the 
advantage of the latter approach. However, it is also noted that in this case little gain is obtained 
with the addition of processors, since the execution time function approaches its asymptotic 
value. The performance obtained with the automatic systern proposed, shown in figure 3. is as 
good as that, and in some cases even outperforms it. 

/* version doing copying manually */ 

array = gmalloc ( array_size ) ; 

local_array = lmalloc ( seg_size ) ; 

read ( array, offset 1 seg_size 1 aux_array); 

switch ( ); /* guarantee aux_array is accessible */ 
write ( local_array, O, seg_size, aux_array ) ; 

sort ( local_array, upper, lower ) ; 

read ( local_array, O, seg_size 1 aux_array ); 

1~rite ( a.rray 1 offset 1 seg_size 1 aux_array); 

free ( local~array); 

sync ( ) ; 

/* version using automatic memory system */ 

array = gmalloc ( array_size, block_size ); 

sort ( array, upper, lower ) ; 

sync ( ) ; 

Figure 1 - Code fragment ofthe programs 

Figure 3a shows the performance dependence on block size when multiplying a 32x32 matrix as 
well as the performance obtained with manual copying. As expected the best performance of the 
implementation using the proposed memory system is achieved when the block size is equal to 
n2!p 112. the total nw11ber of elements required from each matrix for the calculations. As the 
number of processors increase the performance of the cache system approaches that obtained by 
manual copying. This is because increasing the number of processors, and keeping the matrix size 
constant, reduces the number of blocks to be dealt with by the run-time system and the 
consequent overhead associated with their management. It can also be observed that the 
performance variation is small for different block sizes showing that the system responds 
reasonably well even when the block size chosen is not optimal. 

The performance of the balanced sorting algorithm for different block sizes is showed in figure 
3b. For fixed lk data elements the performance obtained with manual copying and with automatic 
copying for block sizes of 8, 16 and 32 is shown. The difference between the two 
irnplementations is more accentuated when only a few processors are utilised. However, in 
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contrast to the results for matrix multiplication, the performance obtained with automatic 
copying exceeds that obtained with manual copying when more than 32 processors are employed 
and the block size is 8 or 16. This is due to the fact that a binary search is required before each 
merge phase. The copy of \Vhole blocks increases the chances of avoiding global access. 
especially when the search space is small compared with the block size which is the case when 
several processors are used. 

Matrix Multiplication 32x32 
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Figure 3 - Dependence of performance on block size- (a) Matrix Multiplication and (b) Balanced Mergesort 

Jmposing a Limit on the Local memory Capacity 

The experiments described so far assumed that the processors had local memories with infinite 
capacity. Whenever a data block \Vas needed it was copied to local memory and kept there untíl 
bulk synchronisation had taken place. What follows is a discussion of the implications of using a 
more realistic assumption. that of having local memories with a fixed size. 

One immediate consequence of imposing a limit on the local memory capacity is the necessity 
of establishing a block replacement Because the local memory has a fixed size. and 
consequently can store only a finite number of blocks, the block replacement policy has to decide 
which block should be discarded when a new block is fetched and the local memory is full. Tv·lO 
popular replacement policies are: (First In First Out), which replaces the block v,hich has 
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been in memory for the longest and LRU (Least Recently the 
whích has been least referenced in the past. The experiments described next made use of 
commonly used replacement policies. 

Table 1 Parallel balanced mergesort results using FlFO and LRU policies 

Memorv Si::e Hit Ratio: Hit Ratio: Hit Ratio. fmrttJí!X<fjon Time 
(in nuniber. of F!FO (LRU) FIFO (LRU) F!FO (LRU) F/FO(LRUJ 
e!ements) · Jst hase 2nd hase Jrd hase 

8 0.53 (0.52) 0.33 (0.33) 0.32 (0.32) 347 (352) 

16 0.81 (0.80) 0.66 (0.66) 0.65 (0.65) 167(172) 

") 
.)~ 0.93 (0.92) 0.83 (0.83) 0.82 (0.82) 87 (92) 

64 0.97 (0.91) 0.91 (0.91) 0.90 (0.90) 58(63) 

128 0.99 (0.95) 0.95 (0.95) 0.93 (0.94) 45 

256 1.00 ( !.00) 0.98 (0.98) 0.96 (0.97) 41 ( 45) 

Parallel Balanced Mergesort- 1024 e!ement.s, 4 processors Paraliel Balélnced Mergesort- 1024 elements, i! processors 
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Figure 4 Effect of(a) FIFO and LRU policies and (b) block size on performance 

The para] lel balanced mergesort was used to collect the 
remote accesses to the total number of ,."'""'"'""".,., 

not reqtming 
for different local 

memory sizes, The number of elements was set to 1 4 processors were 
utilised to do the sorting. This implied each being assigned elements. 
four processors available, three phases are required to perform the sorting. In the first phase. each 
processor sorts its 256 elements, then the second and third phase they are merged to produce 
the final re su! t. In ea eh phase each processor deals with ( 1/p )th of the total number of processors. 
in this case, 256 elements. The memory sizes used from 8 to 256, doubling at each time. In 
order to guarantee that the processors had to manage the same number of blocks ( 8 in this case), 
independent on the memory size, the block sizes were chosen to be equal to 1, 2, 4, 8, 16. 3.2 and 
64 respectively. The hit ratios are given for each phase of the algorithm since at the end of each 
phasc a bulk synchronisation takes place, the modified data is copied back to global memory and 
the local memory is reset. 
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Table 1 shows the results obtained. The hit ratios obtained with FIFO and LRU policies are 
practically the same. This is because the memory accesses generated by the program present low 
temporallocality, i.e. in the program under study recently referenced items tend not be referenced 
again. In this situation, FIFO and LRU produce similar hit ratios since the least referenced block 
becomes the block which has been in memory for the longest time. As expected, the hit ratio 
increases with the memory size, and when this size approaches 256 elements (the slice each 
processor works with), the hit ratio gets close to one. The hit ratios for the second and third phase 
are not equal to one, when the memory size is 256, because in these phases the processors need to 
do a binary search and end up accessing more than their slice of 256 elements. Although 
producing similar hit ratios, FIFO and LRU policies result in different performance. As shown in 
figure 4a, FIFO performance is slightly better than that of LRU. The reason for this is the extra 
overhead involved in keeping a list ofthe least referenced blocks updated. 

To analyse the effects of block size on hit ratio and performance the memory size was fixed in 
64 elements while the block size was increased from 1 to 64, doubling at each time. Figure 4b 
shows the execution times and hit ratios (for the last rnerge phase) obtained when sorting 1024 
elements using 4 processors. As can be noted, the hit ratio increases, reaches a maximum 
starts to fa!!. This is due to the spatial locality of the program, i.e. once a particular is 
referenced a nearby item is often referenced in the near future. When the block size is sma!L most 
of the items fetched are referenced in the near future. However, if the block size gets too big the 
mean utility of the elements being fetched drops and the hit ratio starts to fall. In contrast the 
performance has an inverse behaviour since the hit ratio is inversely proportional to the number 
of remo te accesses. 

6, Condusñons 

The memory management system proposed in this paper is a sin-1ple to the RSM 
already existent on the architecture considered. lt has been shown to produce good results for the 
algorithms studied. of comparable performance to the hand-coded versions for the same 
algorithms. However, the system has its drawbacks and limitations. 

The system is only applicable to data parallel programs where the sarne computatíon is 
performed on disjoint groups of data. The programmer is responsíble inserting barrier 
synchronisation points in the program so as to keep memory coherent. In addition, the 
programmer is still indirectly involved with data management since he/she has to províde the 
basic unit of access (block size) for each global object declared. The choice of a good block size 
is not always trivial. For example, a chosen block size may be good for a(some) superstep(s) but 
not for others. Also, the system deals only with one dimensional arrays. It could be extended to 
deal with multi dimensional arrays by requiring the programmer to define the 'shape' ofthe basic 
unit of access. 

The exploitation of data locality requires the prograrnmer to know something about the 
behaviour of the algorithm and to be able to predict the best pattern of memory management. Thís 
is undesirable but unavoidable unless an architecture can be built which has high bandwidth so 
that the performance of local and non-local memory is comparable, that is, there is a unifonn 
memory architecture. Until such time as these systems exist it will be necessary for the 
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programmer to optimise the performance of an algorithm by performing mernory management 
either directly or indirectly. 
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