
A u toma ti Memory Management for Data
Parallel Programs

Wellington Santos Mmiins

Instituto de Informárica
Unt-versidade Federal de Goiás. Goiánia, Brazil

E-mail.· wsm@inf ulg. br

Abstract: The exploitation of data locality has been crucial for achieving high performance
in parallel computers, The techniques used for that range from those requiring programmer
intervention. to those relying on a run-time system that automatically moves data. This
paper presents a memory management system that, \\hile moving data automatically, still
requires the programmer to provide the size of a basic unit of access. Data locality is
exploited by automatically moving blocks of global data to local memory as necessary. The
system is developed for data parallel programs \Nhere the same computation is performed
on disjoint groups of data. lt is shown that the system can produce comparable results to
those obtained by hand-coded versions. The effects of imposing a limit on the local
memor; s ize of the processors are al so analyzed.

Keywords: Distributed systems and paralellism. Operating systems. Computer architecture.

L Introduction

Efficient data management has been crucial for achieúng high performance almost since the first
computers vvere built. The differences in cost and access time of memory devices resulted in
hierarchical systems where fast (more expensive) de\ ices are at the top of the hierarchy. i.e.
closer to the processor, vvhile slow (cheaper) devices are located further away. High performance
is achiewd by carefully managing data so that currently used data is at the highest possible leve!.
The effectiveness of this approach is due to a natural characteristic of programs known as locality
of reference. T\\ o types of locality are exploited: temporal locality which states that recently
referenced items are likely to be referenced again in the near future, and spatial locality which
refers to the tendency for items to be referenced in clusters. Given the effectiveness of exploiting
data locality in sequential machines, it is not surprising that this technique has also been
employed in paralld machines.

Besides temporal and spatial locality, two new types of locality become importan! in parallel
computing. Parallel machines with no globally accessible data usually use direct interconnection
networks forming a distributed memory hierarchy, i.e. the processors are at different distances
from each other. T o improve locality of reference in these machines, network locality, al so known
as communication locality. can be exploited. This means that remote accesses should be restricted
to the neighbourhood of the processor so that long delays can be avoided. This approach can be
quite effective in producing high performance programs, but it has the serious drawback of
producing non-portable software.

495

the other can •rnn"'""

reference by moving global data el ose (cache or memory) to the processor. In order
two-level memory hierarchy to efficiently, processor
exploited. Processor locality requires that references to a particular region of data come from the
same processor. To keep high processor locality" unnecessary interference from other
should be avoided. The reason processor locality is desirable has to do with the memory
coherency problem. With all processors being able to access global data, if replication of the data
is allowed, the system must make sure that once one of these copies is modified the others are
updated or invalidated. Unless there is high processor locality, the traffic generated these
operations can degrade the system's performance.

The techniques developed for exploiting data locality in parallel machines resemble those
developed for sequential machines and in some cases represent an extension of them. These
techniques either determine data mapping and data movement statically, i.e. before execution, or
move data on demand during run time. In the first case the programmer is required to do the job
himself or to provide informatíon to guide the compiler in generating code to automate this
process. In the second case, a run time system is used to move data to where it is needed.

This paper presents a memory management system that while moving data automatically, still
requires the programmer to provide the size of a basic unit of access. The next two sections give a
brief overview of the techniques proposed so far to exploit data locality in parallel machines. The
following section describes the target architecture used in the experiments conducted. The
automatic memory management system proposed is then described in section 5. The final section
then summarizes and discusses the results.

2. Data Locality Expioitation u.nder Prog:ramm.er Intervention

In the early days of computing the programmer was responsible for memory management. The
programmer would determine, at each moment of time, how information should be distributed
between main memory and backing storage. Whenever the program was expected to exceed the
size ofmain memory, it had to be split into segments which could be overlaid and commands had
to be inserted to make sure the correct overlay was in memory at any time. This approach was
based on the assumptions that it was possible to predict both memory availability of the program
and its behaviour (reference string) so that locality of reference could be exploited. These rather
restrictive assumptions made the applicability of this approach limited to a small number of
applications where static (preplanned) allocation was possible. Automatic folding systems were
eventually proposed and showed to be of comparable performance and ofwider applicability.

The scenario described above resembles that of programming DADM (Disjoint Address-space,
Distributcd Memory) machines using the message passing paradigm. In these systems (e.g.
TCGMSG [Har90], PVM [GeSu92], MPI [MP193]) the programmer must distribute data across
the processors and use explicit message passing to control data movement. Data movement is
implemented by inserting send and receive commands into the program to make sure the required
data is moved from one node to another. The need for these commands, though, is not due to
limited size of local memory but because the processors (usually) need to share data to solve a

496

messages must
dependent on the

computation takes place and what communication is
over data movement and is encouraged to exploit network locality to

coding of data exchange (send/receive commands) is based on
experimentation \Vith different data distributions usually requires a great
Given a good data distribution this approach can be quite effective

programs it imposes too much on the
\Vith the challenge of a parallel for the problem

chosen.
of reprogramming.

hígh

Programming machines using explicit message passing is time consuming and
error prone. T o free the programmer from this burden so me researchers ha ve proposed using
langLtages based on a global name space, for example C* [RoSt87]. Split-C [CDGK93]. Fortran
D [HKT92]. and more recently High Performance Fortran [HPC93]. an extension Fortran
which has being proposed as a standard data parallel Fortran programming language. The idea is
to facilitate the programmer's by allovving him to v .. rite using global data references. as
on a shared memory machine. sophisticated compiler is then used to translate
this codc into a message passing program. However. since data distributíon is crucial to
performance. the programmer is required to annotate the program directíves specifying hO\\

the data should be mapped onto the distributed memory machine.
Compiler-managed memory. although m u eh more com enient from the programmer's point

than the use of explicit message passing. still forces the prograrmrter to become aware
machine idiosyncrasies. In generaL the best distribution scheme depends not on program
characteristics. but also on a number of machine-specif1c en kmd of
optimisations performed by the compiler. In addition the choice a smgle data distríbution for
the entire program may result in poor performance. This ís because a data distribution
may be \\ ell-suited for one phase of an algorithm. it may not be good, terms performance.
for a subsequent phase. In these situations the programmer is required to include realign and
redistribution directi\·es between phases ofthe program.

3. Programmer Tnmsparent Data Locality Exploitation

In the early computers, memory management was the programmer's responsibility. HoweveL
to the increasing complexity of programs and new requirements demanded by multiprogrammíng
and time-sharing systems. dynamic memory management techniques started being investígated.
The idea \Vas to have an adaptive system which would operate on-the-fly as the program runs.
mapping the program into whatever memory size was m ailable. This resulted in the development
of automatic mapping units which later became the virtual memory systems that we today.
FollO\Ying a similar line of development slave memories. today known as cache memories. were
developed to improv-e the performance of the memory hierarchy between the CPU the main

, Both techniques, memory and cache, move data and take

497

advantage of the locality of reference presented by programs. These tvvo techniques were
predicted to become pmi of most sequential machines and this has happened.

Similar ideas have been used in parallel machines. Parallel machines with a Single Address­
space and Distributed Memory (SADM) have received a lot of attention recently. Having a
physically distributed memory means that these machines are easy to scale. In addition the
provision of a single address space frees the programmer from the burden of message passing
programming. In order to provide a single address space in these distributed memory machines,
each processor has to be able to directly access every other local memory. This can be done either
by having processors with sufficient address space (address bits) to directly address the entire
physical rnemory of the m achine, or by concatenating node number and address within a no de to
achieve the same objective. However, due to the high communication costs of these machines,
frequent remote accesses would degrade performance substantially. The solution adopted in
practice is to move blocks of data in an attempt to exploit data locality and thus decrease the
number of remote accesses. In addition, data is usually allowed to be replicated so that multiple
read accesses can take place at the same time using local accesses. Provided the application
presents a high processor locality, the system can be expected to perform welL Systems
implementing these ideas are commonly known as Distributed Shared Memory (DSM) systems
(e.g. IVY [LiSc89], KOAN [LaPr89], DDM [WaHa88], DASH [LLGG90]). They have their
roots in the virtual memory and cache systems of sequential machines. number of DSM's have
been proposed, ranging from simple run-time library extensions to sophisticated hardware
designs.

4, Target Architecture

The experimental platform used in this work is a simulator [1'Jash93] of a distributed memory
machine which supports uniform global access by the use of data randomisation. This
Randomised Shared Memory (RSM) provides a single address space and automatically maps data
to processors by the use of hash functions, i.e. data is spread over the processors so that
probability of overloading any local memory is diminished. The shared address space
distinguishes two forms of data: global data which is randomly distributed amongst al! processors
and local data which is mapped to a single processor memory.

The simulator includes a detailed performance model which costs operations based on
measured performance figures for the T9000 transputer processor and simulations of the e 104
packet router. Local operations modelled by the simulator ínclude arithmetic calculation, context
switching, message handling and local process management Messages entering the network are
assumed to be split up to guarantee that no one message ti es up a switch for long periods of time.
Work on validating the simulator has been carried out at Leeds with a close match being found
between theoretical predictions and experimental results [NDD95].

The simulator is written in e and provides a rich programming interface to execute algorithms
written in C. The programming interface consists of a set of library procedures which support
process management, shared data access and process synchronisation. Only a small subset of
these library calls were used in this research, including: procedures for process management
(fork, jo in, m y_ node and my _index), read and write procedures for data access, and a procedure

498

to barrier synchronise processes. Parallel algorithms, implemented using the programming
interface. are executed directly on the simulator. This way the sequence of operations generated
by the program drives the simulator (execution-driven discrete-event simulation).

5. The Memory Managemen.t System Proposed

The RSM systems provide by the target architecture facilitates the design and analysis of
algorithms since the programmer dcíes not have to wony about data rnapping, and the access
patterns to memory generated by the processors can be assumed random. However. it destroys
data locality because data is kept local to processors that do not necessarily need it. Thus most
memory accesses tend to be non local. If costs involved in non-local access are high,
becomes prohibitive. to overcome probler.o. is to part of the memory
reserved for local data which is not mapped via the hashing algorithm. This substantial

in performance can be
using local

implementation. The extra
algorithms a predictable communication structure; knowledge
reference allows for good allocation reduces comrnunication costs. However.
in other cases. \Vhere the algorithm's communication requirements are
example where communication patterns are input data dependent, exploitation of
much and may require dynamic memory management.

To this problem, the automatic memory management system is proposed.
The defines global data together s1ze a
system uses this information to a block of
blocks copied to local are kept until

modified blocks are back to global memory. One problem approach is
replicas of a block have to updated invalidated) each time contents

operation). Howe\·er. this is not a problem for data parallel algorithms which operate on disjoint
groups of data. The run-tíme acts as a cache-like system by prefetching data which is
expected to be used later on. Each time a rnemory access is requested, the corresponding block
number is calculated and the memory access is performed either locally or remotely (globally).
Data is kept coherent when the processors are synchronised.

To test the system proposed, a parallel version the matrix multiplication algorithm, and a
parallel sort using a balanced merge [FrMa88] were used. For the matrix multiplication algorithrn
(C=AxB). each processor calculates a (n!p112 x n!pil2) sub matrix of C by reading n/p 112 rows of A
and n/p 112 columns of B. In the parallel sort algorithrn, each of the p processors starts sm1ing
nlp elements and then proceeds in a log(p)-phase merge. The number elements in each
phase varíes from n/p in the first phase to n elements in the final doubling each time.
is because partition's boundaries are calculated using a binary search over an increasing search
space.

of algorithm were implemented: one using manual (explicit) copying
and the other relying on the system proposed. To illustrate this figure 1 a

499

code fragment of the two versions for the parallel sort, one doing the copyíng manually and the
other using the automatic memory system. To be able to measure the impact of the system on
performance, routines implementing the automatic memory system were incorporated in the
simulator so that cornpletion times of the algorithms, taking into account the extra management
overheads, could be obtained. Figure 2 shows the performance achieved for direct global memory
access (RSM) and that obtained with the programmer intervention (RSM+Copying). It is clear the
advantage of the latter approach. However, it is also noted that in this case little gain is obtained
with the addition of processors, since the execution time function approaches its asymptotic
value. The performance obtained with the automatic systern proposed, shown in figure 3. is as
good as that, and in some cases even outperforms it.

/* version doing copying manually */

array = gmalloc (array_size) ;

local_array = lmalloc (seg_size) ;

read (array, offset 1 seg_size 1 aux_array);

switch (); /* guarantee aux_array is accessible */
write (local_array, O, seg_size, aux_array) ;

sort (local_array, upper, lower) ;

read (local_array, O, seg_size 1 aux_array);

1~rite (a.rray 1 offset 1 seg_size 1 aux_array);

free (local~array);

sync () ;

/* version using automatic memory system */

array = gmalloc (array_size, block_size);

sort (array, upper, lower) ;

sync () ;

Figure 1 - Code fragment ofthe programs

Figure 3a shows the performance dependence on block size when multiplying a 32x32 matrix as
well as the performance obtained with manual copying. As expected the best performance of the
implementation using the proposed memory system is achieved when the block size is equal to
n2!p 112. the total nw11ber of elements required from each matrix for the calculations. As the
number of processors increase the performance of the cache system approaches that obtained by
manual copying. This is because increasing the number of processors, and keeping the matrix size
constant, reduces the number of blocks to be dealt with by the run-time system and the
consequent overhead associated with their management. It can also be observed that the
performance variation is small for different block sizes showing that the system responds
reasonably well even when the block size chosen is not optimal.

The performance of the balanced sorting algorithm for different block sizes is showed in figure
3b. For fixed lk data elements the performance obtained with manual copying and with automatic
copying for block sizes of 8, 16 and 32 is shown. The difference between the two
irnplementations is more accentuated when only a few processors are utilised. However, in

500

contrast to the results for matrix multiplication, the performance obtained with automatic
copying exceeds that obtained with manual copying when more than 32 processors are employed
and the block size is 8 or 16. This is due to the fact that a binary search is required before each
merge phase. The copy of \Vhole blocks increases the chances of avoiding global access.
especially when the search space is small compared with the block size which is the case when
several processors are used.

Matrix Multiplication 32x32

'-' 1000

@ 800
'-' 600
~

-lOO
---RS\1

-
200 e;

; o
---+--RS\I+Cop,in~

-
_¡

0-lttnlht::r of Pro e,;: s s ~..-.r~

j 800

" i 600

" __§ -lOO

-~ 20(1-
u

Balaoced :\iergesmt- lk elemEnt~

__.,___RS\1

__ -•- __ RS\1---copyin~

~ n~~-;- ·--~ ·---~~~~
16 32 64

\:un1ber ofProct'ssors

Figure 2- Performance achieved with RSM and Copying- (a) Matrix ~liultiplication (b) Balanced Mergesort

'datrix :\lultip!icalion 32.\32 Baianced :\ lergesmi:- 1 k eiemen!§

· · CopJing

------4- block--o 512

tii~
~ ~H ~------ -~

] IH ~-------

-- Co¡wm!,!

Figure 3 - Dependence of performance on block size- (a) Matrix Multiplication and (b) Balanced Mergesort

Jmposing a Limit on the Local memory Capacity

The experiments described so far assumed that the processors had local memories with infinite
capacity. Whenever a data block \Vas needed it was copied to local memory and kept there untíl
bulk synchronisation had taken place. What follows is a discussion of the implications of using a
more realistic assumption. that of having local memories with a fixed size.

One immediate consequence of imposing a limit on the local memory capacity is the necessity
of establishing a block replacement Because the local memory has a fixed size. and
consequently can store only a finite number of blocks, the block replacement policy has to decide
which block should be discarded when a new block is fetched and the local memory is full. Tv·lO
popular replacement policies are: (First In First Out), which replaces the block v,hich has

501

been in memory for the longest and LRU (Least Recently the
whích has been least referenced in the past. The experiments described next made use of
commonly used replacement policies.

Table 1 Parallel balanced mergesort results using FlFO and LRU policies

Memorv Si::e Hit Ratio: Hit Ratio: Hit Ratio. fmrttJí!X<fjon Time
(in nuniber. of F!FO (LRU) FIFO (LRU) F!FO (LRU) F/FO(LRUJ
e!ements) · Jst hase 2nd hase Jrd hase

8 0.53 (0.52) 0.33 (0.33) 0.32 (0.32) 347 (352)

16 0.81 (0.80) 0.66 (0.66) 0.65 (0.65) 167(172)

")
.)~ 0.93 (0.92) 0.83 (0.83) 0.82 (0.82) 87 (92)

64 0.97 (0.91) 0.91 (0.91) 0.90 (0.90) 58(63)

128 0.99 (0.95) 0.95 (0.95) 0.93 (0.94) 45

256 1.00 (!.00) 0.98 (0.98) 0.96 (0.97) 41 (45)

Parallel Balanced Mergesort- 1024 e!ement.s, 4 processors Paraliel Balélnced Mergesort- 1024 elements, i! processors

..j()()

JUO

"-- 7!: FIFO

::'00
~LRU

1 ~11

liill

···~

();-,~

lh 128

Local Memory Size {fn number of elements)

local Memory Size: 64 elernents

-' &·

_t..·

¡::¡ 1.00

090

0.80

o 70

0.60 ~

oso Il e
0.40 o

.to3o
020

010

lb J2 6-l-

Block Size (in ru.rnberof ele~n'ís)

E! Execution T1me
(msecs)

· · .,;. · · Hit Rabo

Figure 4 Effect of(a) FIFO and LRU policies and (b) block size on performance

The para] lel balanced mergesort was used to collect the
remote accesses to the total number of ,."'""'"'""".,.,

not reqtming
for different local

memory sizes, The number of elements was set to 1 4 processors were
utilised to do the sorting. This implied each being assigned elements.
four processors available, three phases are required to perform the sorting. In the first phase. each
processor sorts its 256 elements, then the second and third phase they are merged to produce
the final re su! t. In ea eh phase each processor deals with (1/p)th of the total number of processors.
in this case, 256 elements. The memory sizes used from 8 to 256, doubling at each time. In
order to guarantee that the processors had to manage the same number of blocks (8 in this case),
independent on the memory size, the block sizes were chosen to be equal to 1, 2, 4, 8, 16. 3.2 and
64 respectively. The hit ratios are given for each phase of the algorithm since at the end of each
phasc a bulk synchronisation takes place, the modified data is copied back to global memory and
the local memory is reset.

502

Table 1 shows the results obtained. The hit ratios obtained with FIFO and LRU policies are
practically the same. This is because the memory accesses generated by the program present low
temporallocality, i.e. in the program under study recently referenced items tend not be referenced
again. In this situation, FIFO and LRU produce similar hit ratios since the least referenced block
becomes the block which has been in memory for the longest time. As expected, the hit ratio
increases with the memory size, and when this size approaches 256 elements (the slice each
processor works with), the hit ratio gets close to one. The hit ratios for the second and third phase
are not equal to one, when the memory size is 256, because in these phases the processors need to
do a binary search and end up accessing more than their slice of 256 elements. Although
producing similar hit ratios, FIFO and LRU policies result in different performance. As shown in
figure 4a, FIFO performance is slightly better than that of LRU. The reason for this is the extra
overhead involved in keeping a list ofthe least referenced blocks updated.

To analyse the effects of block size on hit ratio and performance the memory size was fixed in
64 elements while the block size was increased from 1 to 64, doubling at each time. Figure 4b
shows the execution times and hit ratios (for the last rnerge phase) obtained when sorting 1024
elements using 4 processors. As can be noted, the hit ratio increases, reaches a maximum
starts to fa!!. This is due to the spatial locality of the program, i.e. once a particular is
referenced a nearby item is often referenced in the near future. When the block size is sma!L most
of the items fetched are referenced in the near future. However, if the block size gets too big the
mean utility of the elements being fetched drops and the hit ratio starts to fall. In contrast the
performance has an inverse behaviour since the hit ratio is inversely proportional to the number
of remo te accesses.

6, Condusñons

The memory management system proposed in this paper is a sin-1ple to the RSM
already existent on the architecture considered. lt has been shown to produce good results for the
algorithms studied. of comparable performance to the hand-coded versions for the same
algorithms. However, the system has its drawbacks and limitations.

The system is only applicable to data parallel programs where the sarne computatíon is
performed on disjoint groups of data. The programmer is responsíble inserting barrier
synchronisation points in the program so as to keep memory coherent. In addition, the
programmer is still indirectly involved with data management since he/she has to províde the
basic unit of access (block size) for each global object declared. The choice of a good block size
is not always trivial. For example, a chosen block size may be good for a(some) superstep(s) but
not for others. Also, the system deals only with one dimensional arrays. It could be extended to
deal with multi dimensional arrays by requiring the programmer to define the 'shape' ofthe basic
unit of access.

The exploitation of data locality requires the prograrnmer to know something about the
behaviour of the algorithm and to be able to predict the best pattern of memory management. Thís
is undesirable but unavoidable unless an architecture can be built which has high bandwidth so
that the performance of local and non-local memory is comparable, that is, there is a unifonn
memory architecture. Until such time as these systems exist it will be necessary for the

503

programmer to optimise the performance of an algorithm by performing mernory management
either directly or indirectly.

7. Acknowiedgements

The author would like to thank Jonathan Nash for the simulator used in this work and Roy
Dowsing for his comments. This work has been supported by the Instituto de Informática (UFG.
Goiánia, Brazil) and CNPq (Brazil).

References

[AgGu88] A. Agarwal and A. Gupta, "Memory-reference characteristics of multiprocessor applications under
MACH". In Proc. 1988 ACM Sigmetrics Conf. Measurement Modeling Comput Syst.. Vol. 16. No. l. pp.
215-225, May 1988.

[CDGK93]D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy, S. Lumetta, T. von Eicken, and K. Yelick.
Parallel Programming in Split-C. Proceedings o(Supercomputing 93. Ch. 95, pp. 262-273.

[FrMa88] Francis. R. S. and Mathieson. l. D. "A Benchmark Parallel Sort for Shared Memory Multiprocessors".
IEEE Transactions on Computers. Vol. 37, No. 12, pp. 1619-1626, December 1988.

[GeSu92] G. A. Geist and V. S. Sunderam .. "Network-based concurrent computing on the PVM system.
Concurrency: Practice cmd Experience, pages 293-311, June 1992.

[Har90] J. R. J. Harrison. "Portable tools and applications for parallel computers. In lnternationa! .Joumal oj
Quantwn Chemistrr. vol. 40, pages 84 7-863, February 1990.

[HKT92] S. HiranandanL K. Kennedy. and C.-W. Tseng, "Compiling Fortran O for MIMD distributed-memory
machines". Communications ofthe ACM, vol. 35, pp. 66-80. Aug. 1992.

[HPF93] High Performance Fortran Forum. High Performance Fortran language specification version 1.0. Draft.
Jan. 1993

[LaPr89] Z. Lahjomri and T. Priol. "KOAN: A Shared Virtual memory for the iPSC/2 Hypecube". Technica! Rr¡porl
597. IRISA, France. July 1989.

[LiSc89] K. Li and R. Schaefer. "A hypercube shared virtual memory system". Proceedings ol the 1989
lntemationu! Conference on Parcr!le! Processing, 1:125-131. J989.

[LLGG90] D. Lenoski, J. Laudon. K. Gharachorloo, A. Gupta, and J. Hennessy. "The Directory-based Cache
Coherence Protocol for the DASH Multiprocessor". Proceedings of the 17h Annual fnlemutionu!
Symposium on Computer Architecture. pages 148-159. 1990.

[MPI93] Message Passing Interface Forum, "MPI: A message passing interface". In Proc. Supercomputing '93.
pages 878-883. IEEE Computer Society, 1993.

[Nash93] Nash, J. M. "A study of the XPRAM Model for Parallel Computing", PhD Thesis, Universin of Leec/1·,
1993.

[NDD95] J. M. Nash, M. E. Dyer and P. M. Dew. "Designing Practica! Parallel Algorithms for Scalable Message
Passing Machines". Proceedings of the 1995 Wor/d TranspUler Congress, pages 529-541. September
1995.

[RoSt87] J. Rose and G. Steele Jr., C*: An extended C language for Data Parallel Programming. Proceedings ofthe
Second /nternationa! Conference on Supercomputing, Vol. 2, pages 2-16, M ay 1987.

[Smit87] A. J. Smith, ''Line (Block) Size Choice for CPU Cache Memories". IEEE Transactions Computers, Vol.
36, No. 9, pp. 1 063-l 075, 1987.

[WaHa88]D. H. D. Warren and S. Haridi, "The Data Diffusion Machine - a scalable virtual memory
multiprocessor". Proceedings of the 1988 lnternationa! Conference on Fiflh Generation Computer
Systems, pages 943-952, Tokyo, Japan, Dec. 1988.

504

